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Comparison of time-delayed feedback schemes for spatiotemporal control
of chaos in a reaction-diffusion system with global coupling
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Time-delayed feedback control for stabilizing time periodic spatial patterns is investigated in a generic
reaction-diffusion system with global coupling. We focus on the case of low-dimensional chaos where unstable
patterns admit only a single unstable mode. Spatial degrees of freedom are taken into account to define
different control schemes. The efficiency of these schemes is discussed, where control forces are motivated by
physical requirements as well as by the possibility of obtaining analytically exact results. We find that control
schemes that contain the full feedback of the inhibitor variable may finally destroy the control performance.
Thus schemes that omit the inhibitor might be more efficient. Our numerical findings are explained in terms of
Floquet spectra and compared with analytical solutions of particular coupling schemes.
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I. INTRODUCTION

Control of complex chaotic dynamics has become one
the central issues in applied nonlinear science over the
decade~cf. Ref. @1#!. Control theory is of course a well
established discipline in engineering and applied mathem
cal sciences for almost half a century~cf. e.g. Ref.@2#!, but
its application often requires either some information ab
the structure of the system or some data processing. The
aspect of chaos control is the emphasis of noninvasive c
trol methods together with the observation that chaos s
plies a huge number of unstable states that can be stabi
with tiny control power@3#. A particularly simple and effi-
cient scheme uses time-delayed signals to generate co
forces for stabilizing time periodic states@4# ~time-delay au-
tosynchronization or ‘‘Pyragas method’’!. It is simple to
implement, quite robust, and has been applied successful
real experiments@5,6#. But the performance of the contro
method cannot be understood in a straightforward way. A
lytical insight into this scheme has been gained just rece
@7,8#.

An important ingredient in any control method is th
choice of the coupling of control forces to the dynamic
degrees of freedom. Unfortunately, this question has not b
addressed systematically for time-delayed feedback meth
Only a few preliminary results are available in the literatu
@9,10#. Here we will discuss this topic in the context of
reaction-diffusion model with a global constraint. Such mo
els are relevant in different fields of physics and chemis
e.g., for the dynamics of semiconductor devices~cf. Ref.@11#
for a recent review! or in electrochemistry@12#. Thus we
expect that our investigations show generic features that
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of use in quite different fields of science.
The model we are dealing with was originally derived f

charge transport in a layered semiconductor system suc
the heterostructure hot electron diode@13#. The resulting
model equations in nondimensional units read

] tu~ t !5a@ j 02~u2^a&!#2KFu~ t !,
~1!

] ta~x,t !5 f ~u2a!2Ta1]x
2a2KFa~x,t !.

Here u(t) is the inhibitor anda(x,t) the activator variable.
In the semiconductor contextu(t) denotes the voltage dro
across the device anda(x,t) is an internal degree of free
dom, e.g., an interface charge density. The local current d
sity in the device isj (x,t)[u(t)2a(x,t), and j 0 is the ex-
ternally applied current that acts as a control parameter.
one-dimensional spatial coordinatex corresponds to the di
rection transverse to the current. We consider a system
width L with Neumann boundary conditions]xa50 at x
50,L corresponding to no charge transfer through the late
boundaries.T denotes the tunneling rate through the collec
layer. The relaxation ratea is determined by the internal an
external capacitance. The global coupling represented b

^a&~ t !5
1

LE0

L

a~x,t !dx ~2!

arises from the application of Kirchhoff’s law to the circu
in which the device is operated@11#. The nonlinear part of
the transport equation, giving rise to anS-shaped local cur-
rent density vs field characteristic, is canonically modeled
a simple Lorentzian of the form

f ~ j !5 j /@ j 211#. ~3!

Equation~1! contain control forcesFa andFu for stabilizing
time periodic patterns. Details of different choices for the

en
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forces and different control schemes are discussed below~cf.
Table I!. The strength of control terms is proportional to t
control amplitudeK, which gives one important parameter
each control scheme. In the semiconductor context th
forces can be implemented by appropriate electronic circ
@10#.

The dynamics of the free system, i.e.,K50, is very well
understood@14–16#. For our purpose it is important that th
model develops temporally chaotic and spatially nonunifo
states~spatiotemporal spiking, cf. Fig. 1! in appropriate pa-
rameter regimes. For any value ofL the system, due to the
global coupling, allows only single spikes at the boundary
the spatial domain@17#. These are associated with low
dimensional chaos where only one unstable Lyapunov ex
nent exists@14#. Throughout this paper we focus on the sp
cial choicea50.035,T50.05,L540, andj 051.262. In the
semiconductor context the time and length scales of our
mensionless variables are typically given by picoseconds
micrometers, respectively.

We are concerned with controlling unstable time perio
patternsup(t)5up(t1t), ap(x,t)5ap(x,t1t), which are
embedded in a chaotic attractor. For that purpose, we a
control forcesFa andFu that are derived from time-delaye
differences of the voltage and the charge density. For
ample, we may chooseFu5Fvf with the voltage feedback
force

Fvf~ t !5u~ t !2u~ t2t!1RFvf~ t2t!. ~4!

The last contribution, involving the filter parameteruRu,1
corresponds to an improvement by multiple time-delays p
posed in Ref.@18# ~extended time-delay autosynchroniz
tion!, whereas the original scheme based on a simple ti

TABLE I. Overview of different control schemes with the co
responding choices ofFa andFu .

Type of control Fa Fu Section

Diagonal control F loc Fvf II
Local control F loc 0 III
Global control without voltage feedback Fglo 0 III
Global control with voltage feedback Fglo Fvf IV
Global control with partial voltage feedbackFglo « Fvf IV

FIG. 1. Projected phase portrait of the uncontrolled system
the (̂ j &,u) plane. The null isoclines of the uniform system a
plotted as dashed lines. The uniform fixed point atu511.0, ^ j &
51.27 is indicated by a dot, and the chaotic spatiotemporal attra
is represented by its projected trajectory.
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delayed difference corresponds to the choiceR50. For
consideration of the caseR.1, see Ref.@19#.

Here we concentrate on the question how the coupling
the control forces to the internal degrees of freedom in
ences the performance of the control. For our model we c
sider two different choices for the control forceFa . On one
hand, we use a force that is based on the local charge de
according to

F loc~x,t !5a~x,t !2a~x,t2t!1RFloc~x,t2t! ~5!

whereas on the other hand, we propose a construction th
only based on its spatial average

Fglo~ t !5^a&~ t !2^a&~ t2t!1RFglo~ t2t!. ~6!

We call the choiceFa5F loc a local control scheme in con-
trast to theglobal control schemeFa5Fglo , which requires
only the global average and does not depend explicitly on
spatial variable. The second option has considerable exp
mental advantages since the spatial average can be obt
by a simple measurement of the total current^ j &5u2^a&.

Finally, we distinguish between control schemes that
no voltage feedbackFu[0, full voltage feedbackFu5Fvf or
even partial voltage feedbackFu5«Fvf with 0,«,1. The
different schemes discussed in the following sections
summarized in Table I.

II. DIAGONAL CONTROL

In general the analysis of the control performance of tim
delayed feedback methods results in differential-differen
equations that are hard to tackle and analytical results on
linear stability analysis have been obtained only recen
@7–9#. Stability of the orbit is governed by eigenmodes a
the corresponding complex valued growth ratesL ~Floquet
exponents!. The eigenvalue equation that determines th
exponents can be cast into the form@20#

L5GS K
12exp~2Lt!

12R exp~2Lt! D . ~7!

The right-hand side contains a functionG(k) that is deter-
mined by the linear stability of the free orbit and the co
pling scheme of the control forces. The argument ofG in Eq.
~7! arises via a Laplace transform of the control forces@cf.
e.g., Eq.~4!#.

In general it is difficult to evaluate Eq.~7! quantitatively,
since the explicit form of the functionG(k) is unknown.
There exists, however, a simple case~which we calldiagonal
control! where the right-hand side is given byG(k)5l2k
@7#. Here l denotes any of the Floquet exponents of t
uncontrolled orbit. In our context the diagonal contr
scheme corresponds to the choiceFa5F loc andFu5Fvf . It
is a straightforward extension to a spatially extended sys
of an identity matrix for the control of discrete systems
ordinary differential equations~cf. Ref. @9#!. In such
schemes, every dynamical variable is monitored and fe
back is applied to each one based only on its own behav
Moreover, the feedback gain is the same for every varia

n

or
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The diagonal scheme is amenable to analytical treatm
which makes it useful as a reference point, to which ot
control schemes may be compared. Thus for the diago
coupling scheme Eq.~7! reduces to the exact equation@21#

L5l2K
12exp~2Lt!

12R exp~2Lt!
. ~8!

Successful control corresponds to those control param
values (K,R) for which Eq.~8! yields Floquet exponentsL
with negative real part only.

For the numerical simulations we concentrate on the
stable periodic orbit with periodt5984.85, which has only
one unstable Floquet mode. The corresponding Floquet
ponent islt50.4901 ip. We implement the diagonal con
trol scheme for our model~1! using numerical integration
with an Euler scheme of step sizeDt50.025. Spatial degree
of freedom are modeled on a lattice with spatial resolut
Dx5L/25 and the derivative is evaluated up to first ord
We have also performed simulations with different step si
to check that our results, in particular the control domai
are robust against the choice of the step size. Furtherm
the numerical results are in accordance with analytical
pressions, where available~cf. Fig. 2!. As a criterion for suc-
cessful control we require control forces to be less than 124

in amplitude. In order to avoid any complications caused
transient behavior or by multistability we usually choose i
tial conditions in the vicinity of the unstable orbit.

In Fig. 2, the regime of successful control in theK-R
parameter plane is depicted. The control domain has its t
cal triangular shape bounded by a flip instability (ReL
50, Im Lt5p) to its left and by a Hopf bifurcation to its
right. Inclusion of the filter parameterR increases the rang
of K over which control is achieved. From Eq.~8! it follows
that the left boundary~flip instability! is given by the straight
line,

R5
2

Rel
K21. ~9!

We observe that the numerical result fits very well with t
analytical prediction. The deviations from the right bounda
for larger R are numerical artefacts resulting from the ve
small positive real part of the largest Floquet exponent. N
that the precise location of the control domain, in particu

FIG. 2. Control domains in theK-R parameter plane for the
unstable periodic orbit with periodt5984.85. * denotes successfu
control in the numerical simulation,• denotes no control, lines de
note analytical result according to Eq.~8!.
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its tip depends on the value of the Floquet exponentsl of the
uncontrolled orbit. In particular, the orbit of the uncontrolle
system must satisfy the constraint Relt<2(11R)/(12R)
in order that control works successfully@20#.

To confirm the bifurcations at the boundaries we consi
the Floquet spectrum of the orbit subjected to control.
use a Benettin algorithm@22# for numerical computation of
the Floquet exponents. Such an algorithm can be app
easily to obtain the leading part of the eigenvalue spectr
since one just requires the forward integration of the f
system ~1! and successive reorthogonalization. The alg
rithm yields the real parts of the exponents, ReL, since it
detects the expansion in phase space but ignores the tor
Thus complex conjugate exponents show up as doubly
generate pairs. We always obtain a Goldstone mode,L50,
since we are dealing with an autonomous model. Finally,
algorithm shows a numerical hybridization phenomenon
eigenbranches cross. Such an artifact can be reduced b
creasing the integration time and it has to be ignored
interpreting the eigenvalue spectra.

For the diagonal control scheme we have calculated
five Floquet exponents with the largest real part in dep
dence onK for fixed R50 ~Fig. 3!. The largest nontrivial
exponent decreases with increasingK and collides at nega
tive values with a branch coming from negative infinity. As
result a complex conjugate pair develops and real parts
crease again. The real part of the exponent finally crosses
zero axis giving rise to a Hopf bifurcation. Our numeric
simulations are in agreement with the analytical result
cording to Eq.~8!. Note that for the diagonal scheme n
other modes interfere with the leading branch@21#.

III. CONTROL SCHEMES WITHOUT
VOLTAGE FEEDBACK

Let us now concentrate on control schemes without v
age feedback, i.e., on schemes that are solely based o
forces~5! or ~6!. In particular, we will discuss the local con
trol schemeFa5F loc and the global scheme without voltag
feedback,Fa5Fglo . For our numerical simulations we focu
again on the unstable orbit with periodt5984.85, which
was already used in the preceding section.

We will compare our simulations to analytical results
the eigenvalue equation~7!. For smallk a linear approxima-
tion can be used:G@k#5l1xk with a constantx. We refer
the reader to Ref.@21# for more details concerning this as

FIG. 3. Leading part of the Floquet spectrum for diagonal co
trol in dependence onK (R50): from numerical simulation. The
inset shows the analytical result according to Eq.~8! ~lines! vs
numerical data~circles!.
3-3
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sumption. Then the control performance is approximat
governed by

L5l1xK
12exp~2Lt!

12R exp~2Lt!
. ~10!

The new parameterx, which is real valued in the case of fli
orbits ~i.e., Imlt5p) takes all the details of the contro
scheme into account.

The results for the control domain in theK-R parameter
plane are summarized in Fig. 4. Control domains for b
schemes look similar in shape, although the domain for
local scheme is shifted slightly towards lower control amp
tudes. The left-hand border of the control domain cor
sponding to a flip instability is very well modeled by th
analytical formula~10! with an appropriate choice of th
parameterx. That is not surprising since even the exact
genvalue equation~7! predicts that the boundary is a straig
line: ip/t5G@2K/(11R)#, hence the argument ofG is con-
stant andR11;2K. The lower right-hand boundary of th
control domain does not coincide very well with the analy
cal expression, a feature already known in low-dimensio
dynamical systems. The shape of this boundary depend
details of the system. Most remarkably the domains do
extend to largeR values. There exists an upper right-ha
cutoff that prevents control beyond the boundaryC @Fig.
4~b!#. Thus, increasingR does not necessarily increase t
control performance.1

In order to understand the control domains in more de
we will discuss the instability mechanisms that generate
control boundaries. Since both methods generate qua
tively similar control domains we restrict the discussion
the experimentally more relevant global scheme with
voltage feedback. Let us first take a look at the Fourier sp
tra ~cf. Fig. 5! of the total current̂ j & in the vicinity of the
three qualitatively different control boundaries. At the le
hand boundary~A! a peak at half the fundamental frequen
develops, which indicates a flip instability~period doubling!
in accordance with the theoretical considerations of the p
ceding paragraph. At the lower right-hand boundary~B! side-
band frequencies emerge while crossing the control bou
ary. Although the theoretical prediction of the boundary fa

1We note the existence of a fourth boundary, at the lower righ
Fig. 4, that has not yet been analyzed in detail.

FIG. 4. Control domains for~a! the local and~b! global control
scheme without voltage feedback. * denotes domain of contro•

denotes no control, lines denote analytical result of Eq.~10! with
Relt50.490, x521. Double arrows indicate parameter settin
used for the Fourier spectra in Fig. 5.
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quantitatively, the instability mechanism is in accordan
with the Hopf scenario described in Sec. II. Finally, we o
serve at the upper right-hand boundary~C! a slight shift in
the spectrum. In addition, the instability is accompanied
strong hysteresis when sweeping the control parame
across the control boundary~Fig. 6!. Thus the upper right-
hand control boundary is generated by a subcritical bifur
tion. The periodic state that appears beyond the thresho
generated by the control loop and does not correspond t
unstable orbit of the free system. In fact it coexists with t
proper periodic orbit within the control domain.

To uncover the nature of the subcritical bifurcation th
constitutes the upper right-hand control boundary we h
evaluated the Floquet spectrum too~cf. Fig. 7!. The spectrum
shows a slightly more complicated structure compared to
result of the simple analytical formula~10!, which is rigor-
ously valid for diagonal control. One still observes a fl
instability at the lower threshold and the typical butter
shape of the leading eigenvalue branch. But now a real F
quet multiplier exp(Lt) with Im L5p/t and ReL coming
from lnuRu crosses the leading complex branch nearK
'0.0035 and takes over the dominant role. It finally yiel
an upper control threshold (ReL50) at K'0.0045, thus
giving rise to a subcritical flip instability.

IV. GLOBAL CONTROL WITH PARTIAL
VOLTAGE FEEDBACK

Control domains for local and global schemes witho
voltage feedback look similar in shape. But their size is
duced, compared to diagonal control, by an additional s
critical bifurcation limiting the control for large filter param
eterR. In fact by varying the currentj 0 these domains may

n

FIG. 5. Fourier spectrum of the total current^ j &(t)5u2^a& for
global control without voltage control~a! at the left-hand boundary
A (K50.000 318,R520.3), ~b! at the lower right-hand boundar
B (K50.0018,R520.52), and~c! at the upper right-hand bound
ary C (K50.003, R50.216) @cf. Fig. 4~b!#. The dashed line indi-
cates the spectrum of the periodic orbit in the control domain.

FIG. 6. Temporal average of the control force when sweep
across the upper right-hand control boundary atK50.003@line C in
Fig. 4~b!#.
3-4
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COMPARISON OF TIME-DELAYED FEEDBACK SCHEMES . . . PHYSICAL REVIEW E 66, 016213 ~2002!
shrink and finally they even may vanish. Thus the up
control boundary has a dramatic effect on the control per
mance. If we include voltage feedback the local scheme
comes the diagonal coupling scheme that is very efficien
naive guess would expect similar features to happen if
voltage feedbackFvf according to Eq.~4! is included into the
global coupling scheme. Surprisingly, the global cont
scheme with voltage feedback does not work at all, and
hardly finds orbits that can be stabilized with such a sche
The corresponding Floquet spectrum displays a branch
entirely positive real part, so that stabilization is nev
achieved@cf. Fig. 8~a!#.

However, if we reduce the relative strength of the volta
feedback, i.e., if we introduce a parameter« in Fu5«Fvf and
decrease its value continuously, then the unstable bra
moves downwards. At«'0.6, a region develops where a
exponents are negative. A rather large control interval de
ops at«50.4 as displayed in Fig. 8~b!. The whole structure
of the spectrum now resembles to some extent the pu
diagonal control scheme~cf. Fig. 3!. Lowering« further the
spectrum then finally transforms to the form of the glob
control without voltage feedback~cf. Fig. 7!. Thus we expect
that an optimal feedback ratio for« can be determined suc
that control domains become maximal. A full voltage fee
back with«51 results in an overshoot and destroys the c
trol performance completely.

V. CONCLUSION

We have compared different coupling schemes for tim
delayed feedback control of spatiotemporal patterns wit
single unstable eigenmode. For classical control techniq
such a comparison is one of the central issues of mod
control theory and there exists a detailed theory of the c
trol performance. Unfortunately, little is known for time
delayed feedback methods, although such methods are e
applicable for the stabilization of time periodic patterns.

Our investigations have shown that a naive extrapola

FIG. 7. Leading part of the Floquet spectrum for global cont
without voltage feedback forR50. The dashed line interpolates th
regime where the numerical accuracy is insufficient due to v
small uReLu.
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of the control performance from the analytically solvab
case of diagonal control fails. Although local and global co
pling without voltage feedback behave similarly, the incl
sion of voltage feedback results in completely different co
trol performances. A partial voltage feedback with a weig
factor of less than 1 enhances the control performance.

In addition, we observe that Floquet branches that are
present in the system without time-delayed feedback m
impose additional limits to the control domains~cf. also Ref.
@21#!. In our case such branches are responsible for subc
cal bifurcations and strong hysteresis. In particular, the p
formance of extended time-delay autosynchronization m
decline if the filter parameterR is increased. The details o
the Floquet spectrum, however, depend on the particular
tem and the orbit under consideration.

So far there exists no complete and systematic treatm
of the effect of different coupling schemes for time-delay
feedback control. Even for the simple case of stabilization
~time independent! fixed points such a problem requires th
analysis of transcendental equations@23#. The situation is
even worse if time periodic states or spatiotemporal patte
are considered, where an analytical discussion of the co
sponding Floquet problem seems to be at the moment ou
reach. However, some insight can be gained by numer
results and the semiquantitative discussion presented ab

We have focused here on the simplest type of spatiot
poral patterns that admit just a single unstable mo
Whether time-delayed feedback methods can be applied
cessfully to fully developed extensive spatiotemporal ch
where numerous unstable modes are present remains stil
of the challenges of spatiotemporal control of chaos~cf. e.g.,
Ref. @24#!, from the experimental as well as from the the
retical point of view.
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FIG. 8. Floquet spectra for global control with partial voltag
feedback for the periodic orbit with periodt5984.85 forR50. ~a!
«50.7, ~b! «50.4.
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